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Note 

Numerical Treatment of the Axial Singularity 

in a Flux Coordinate System for Particle Simulation 

In the realistic simulation of physical systems whether in 2-D or 3-D there often 
arise situations where the fluid flow has a preferred direction. An example of this is a 
magnetically confined plasma where the flow is predominantly along the magnetic 
field lines. To avoid a large numerical diffusion and hence inaccuracy, it is often 
necessary to adopt a flux coordinate system with coordinates following closely the 
contours given naturally by the physics of the problem; an example for this is shown 
in Fig. 1. In this system radial motion is measured by the flux function w = j B . dA, 
where B is the magnetic field and A an enclosed area whose boundary is traced out 
by the intersections of a magnetic lield line with a poloidal plane. The angular 
variable B0 is measured from the axis which is at the center of the set of nested w 
surfaces. This point at v = 0 corresponds to multivalues of f?,, and this causes most 
general numerical methods to break down. However, we shall show that it is both 
accurate and efftcient in computer time to transform partially to a rectangular system 
where the singularity clearly does not exist. This differs from standard transformation 
procedures in that a knowledge of the spatial derivatives of a function, in our case the 
magnetic field B, in X, JJ coordinates is not required, hence avoiding a large source of 
inaccuracy. We show that this is possible by expanding this function B, assuming 
only its analyticity near the origin, in such a way that possible singular terms are 
eliminated. 

FIG. 1. Schematic diagram of a 2-D flux coordinate system eO,. I. 
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We shall use as an example a problem we have encountered in our simulation of a 
plasma in an asymmetric torus [ 1, 21. Here the fact that a flux surface is also an 
equipotential surface gives additional incentive for the use of flux coordinates. The 
equations for the drift motion of ions in a magnetic field can be cast in a very simple 
Hamiltonian form which can be easily integrated [2] if the flux coordinates 0,. v, x 
are used. Here w is the toroidal flux, 8, is a poloidal angle measured from the 
magnetic axis and x is a coordinate along the magnetic field line. Since x does not 
enter into our essentially 2-dimensional problem we shall henceforth restrict ourselves 
to 8,, v only. 

The drift equations are 

6 - - 

where B is the magnetic tield and 

A =P +i-‘fB, where ,U = the magnetic moment, 

p,, = the parallel Larmor radius, 

and 

Q(w) = electric potential. 

When these equations are integrated very close to v = 0, the singularity at the axis 
manifests itself most commonly as the unphysical condition II/ < 0 when an 
integration scheme like the 4 th order Runge-Kutta is used. Although the probability 
of this occurring is in general of the order of the ratio of a few times nA$ to the total 
flux area, where Ay/ is the change in v in one time step (in our case this ratio is 
around 10e4), it is very inconvenient especially when particles have long confinement 
times and the runs abort before data collection is complete. 

As this singularity does not exist in Cartesian system we transform to I, ~3 
coordinates using circularized flux surfaces: 

x = (2y)“? cos IF?,, 

y = (21y)“’ sin 8,. 

We then advance the x, y coordinates in time instead of the 8,, IJI coordinates using 
the equations 

dx 1 -- dt - (2w)l12 ~0s 0, 

dy 1 
dt=oL/z 

- m4 “2sintI, 

(III) 



FLUX COORDINATE SYSTEM FOR PARTICLE SIMULATION 211 

Substituting Eqs. (I) into (III) gives 

dx -= 
dt 

At first sight these equations do not appear useful, firstly because of the appearance 
of I#‘* in the denominator, and secondly because of the possible singular behavior of 
aB/M,, aB/av which caused breakdown of (I) in the first place. A straightforward 
transformation to x, y coordinates would require the knowledge of the spatial 
derivations aB/ax, aB/ay, etc., but in general these are not easily obtainable 
numerically, often involving interpolation from the original system. The process is 
therefore both computer time consuming as well as being possibly inaccurate. 
Assuming only the analyticity of the function B near the origin in x, y system, it may 
be seen that B must possess a dependence on I// such that Eqs. (IV) are well behaved 
near the origin : 

aB B=&+~x+~~++*+- 
ay axay 

Transforming to polar coordinates with x = r cos 8, y = r sin 8 gives 

B = c c, rl cos(me), l>m, 
m 

where c, are constants and we have dropped all antisymmetric terms in our special 
application. Using analogous arguments for transformation to magnetic coordinates 
and approximating the residual variations in w  with a polynomial, we have 

B = s ,,,l”‘1/* (a + by + cl//* * * * ) cos(me,) 
m 

from which 

aB 
‘T my/‘ml’2(a + bw + cty* + dt$) sin(mO,), 

zig=% 

(a + bly + cw* + dW3) cos(m8,) 

(VI) 

+ #““‘(b + 2cw + 3dt//*) cos(m8,) 

- I$~~/*(u + by + cv* + dv3) sin(m0,). 
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FIG. 2. Projections of a trajectory of a particle in an asymmetric toroidal plasma device. Points 
inside the circle I = we are calculated in (x, J) system and points outside in (O,, w) system. 

For Irnl = 1 the first term of the second equation in (VI) tends to infinity as w  goes to 
0. This is of course the reason why Eqs. (I) are not useful near the origin. However. 
when (VI) is incorporated into the Cartesian formulation in (IV) the multiplying 
factor w”* removes the singularity in the first term of B/L+. 

We have implemented the algorithm outlined above in (w, f?,) coordinates. Figure 2 
shows the projected trajectory in 0,, IJ/ plane of a particle whose path straddles the 
boundary at t,u = v/,. For w  < wc the particle position is advanced in x, y space while 
for the region VI, < w  < va the computation is entirely in 8,, w  space. Here wc = lo-’ 
and w, = 1. The choice of w, depends mostly on the maximum AIJI the particle makes 
per time step in the region around v/ = 0. To prevent the particle from crossing the 
axial region in one step starting from w  > vc, it is desirable to make tyc/Aty 2 10. 

Major alteration to the computer program is only required in the subroutine 
supplying the RHS of (IV) to the Runge-Kutta control subroutine. In order to retain 
as much as possible the vectorization benefits of the CRAY-I compiler, we make the 
same array store either (f?,, w) or (X,JJ) depending on the value 0 or 1 of a switch. 
This switch is used to direct the flow to either the (0,) w) or the (x, y) blocks of code. 
Testing on v/ to find out if the particle has just entered or left the x, y computational 
region given by w  < VI, is performed once per time step in the main program. 

An alternative solution when Eqs. (IV) are only used when wc < 1 is to drop all 
higher terms in the polynomial for B, (V), keeping only the constant term. This was 
found to reduce the computer time required for one time step by 20%. 
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